临街小站

Python中的numpy

Numpy

NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。

NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。

多维数组

多维数组的类型是:numpy.ndarray

使用numpy.array方法

  • 以list或tuple变量为参数产生一维数组:
1
2
3
4
5
6
>>> print(np.array([1,2,3,4]))
[1 2 3 4]
>>> print(np.array((1.2,2,3,4)))
[ 1.2 2. 3. 4. ]
>>> print type(np.array((1.2,2,3,4)))
<type 'numpy.ndarray'>
  • 以list或tuple变量为元素产生二维数组:
1
2
3
>>> print(np.array([[1,2],[3,4]]))
[[1 2]
[3 4]]
  • 指定数据类型

例如numpy.int32, numpy.int16, and numpy.float64等:

1
2
>>> print np.array((1.2,2,3,4), dtype=np.int32)
[1 2 3 4]
  • 使用numpy.arange方法
1
2
3
4
5
6
7
8
9
10
11
12
>>> print(np.arange(15))
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]

>>> print type(np.arange(15))
<type 'numpy.ndarray'>

>>> print np.arange(15).reshape(3,5)
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
>>> print type(np.arange(15).reshape(3,5))
<type 'numpy.ndarray'>
  • 使用numpy.linspace方法

例如,在从1到3中产生9个数:

1
2
3
>>> print(np.linspace(1,3,10))
[ 1. 1.22222222 1.44444444 1.66666667 1.88888889 2.11111111
2.33333333 2.55555556 2.77777778 3. ]
  • 使用numpy.zeros,numpy.ones,numpy.eye

可以构造特定的矩阵

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> print(np.zeros((3,4)))
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]

>>> print(np.ones((4,3)))
[[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]]

>>> print(np.eye(4))
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 0.]
[ 0. 0. 0. 1.]]
  • 创建一个三维数组:
1
2
3
4
5
6
7
8
9
10
11
12
>>> print(np.ones((3,3,3)))
[[[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]]

[[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]]

[[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]]]

获取数组的属性

1
2
3
4
5
6
7
8
9
10
11
>>> a = np.zeros((2,3,2))
>>> print(a.ndim) #数组的维数
3
>>> print(a.shape) #数组每一维的大小
(2, 3, 2)
>>> print(a.size) #数组的元素数
12
>>> print(a.dtype) #元素类型
float64
>>> print(a.itemsize) #每个元素所占的字节数
8
  • 数组索引,切片,赋值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>>a = np.array( [[2,3,4],[5,6,7]] )
>>> print(a)
[[2 3 4]
[5 6 7]]
>>> print(a[1,2]) #index从0开始
7
>>> print a[1,:]
[5 6 7]
>>> print(a[1,1:2])
[6]
>>> a[1,:] = [8,9,10] #直接赋值
>>> print(a)
[[ 2 3 4]
[ 8 9 10]]
  • 使用for操作元素
1
2
3
4
5
6
>>> for x in np.linspace(1,3,3):
... print(x)
...
1.0
2.0
3.0
  • 基本的数组运算

先构造数组a、b:

1
2
3
4
5
6
7
8
>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print(a)
[[ 1. 1.]
[ 1. 1.]]
>>> print(b)
[[ 1. 0.]
[ 0. 1.]]
  • 数组的加减乘除
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
>>> print(a > 2)
[[False False]
[False False]]
>>> print(a+b)
[[ 2. 1.]
[ 1. 2.]]
>>> print(a-b)
[[ 0. 1.]
[ 1. 0.]]
>>> print(b*2)
[[ 2. 0.]
[ 0. 2.]]
>>> print((a*2)*(b*2))
[[ 4. 0.]
[ 0. 4.]]
>>> print(b/(a*2))
[[ 0.5 0. ]
[ 0. 0.5]]
>>> print((b*2)**4)
[[ 16. 0]
[ 0 16.]]
  • 使用数组对象自带的方法
1
2
3
4
5
6
7
8
>>> a.sum() #a的元素个数
4.0
>>> a.sum(axis=0) #计算每一列(二维数组中类似于矩阵的列)的和
array([ 2., 2.])
>>> a.min()
1.0
>>> a.max()
1.0
  • 使用numpy下的方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
>>> np.sin(a)
array([[ 0.84147098, 0.84147098],
[ 0.84147098, 0.84147098]])
>>> np.max(a)
1.0
>>> np.floor(a)
array([[ 1., 1.],
[ 1., 1.]])
>>> np.exp(a)
array([[ 2.71828183, 2.71828183],
[ 2.71828183, 2.71828183]])
>>> np.dot(a,a) ##矩阵乘法
array([[ 2., 2.],
[ 2., 2.]])
  • 合并数组

使用numpy下的vstack和hstack函数:

1
2
3
4
5
6
7
8
9
10
11
12
>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print(np.vstack((a,b)))
#顾名思义 v--vertical 垂直
[[ 1. 1.]
[ 1. 1.]
[ 1. 0.]
[ 0. 1.]]
>>> print(np.hstack((a,b)))
#顾名思义 h--horizonal 水平
[[ 1. 1. 1. 0.]
[ 1. 1. 0. 1.]]

看一下这两个函数有没有涉及到浅拷贝这种问题:

1
2
3
4
5
6
7
8
9
>>> c = np.hstack((a,b))
>>> print c
[[ 1. 1. 1. 0.]
[ 1. 1. 0. 1.]]
>>> a[1,1] = 5
>>> b[1,1] = 5
>>> print c
[[ 1. 1. 1. 0.]
[ 1. 1. 0. 1.]]

可以看到,a、b中元素的改变并未影响c。

  • 深拷贝数组

数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:

1
2
3
4
5
6
7
>>> a = np.ones((2,2))
>>> b = a
>>> print(b is a)
True
>>> c = a.copy() #深拷贝
>>> c is a
False
  • 基本的矩阵运算

转置:

1
2
3
4
5
6
7
>>> a = np.array([[1,0],[2,3]])
>>> print(a)
[[1 0]
[2 3]]
>>> print(a.transpose())
[[1 2]
[0 3]]
  • 迹:
1
2
>>> print(np.trace(a))
4
  • numpy.linalg关于矩阵运算的方法

>>> import numpy.linalg as nplg

  • 特征值、特征向量:
1
2
3
>>> print nplg.eig(a)
(array([ 3., 1.]), array([[ 0. , 0.70710678],
[ 1. , -0.70710678]]))

矩阵对象

numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中。

class numpy.matrix(data,dtype,copy):

  • 返回一个矩阵,其中data为ndarray对象或者字符形式;

  • dtype:为data的type;

  • copy:为bool类型。

1
2
3
4
5
6
7
8
9
10
11
>>> a = np.matrix('1 2 7; 3 4 8; 5 6 9')
>>> a #矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式(‘ ’),矩
matrix([[1, 2, 7], #阵的元素之间必须以空格隔开。
[3, 4, 8],
[5, 6, 9]])

>>> b=np.array([[1,5],[3,2]])
>>> x=np.matrix(b) #矩阵中的data可以为数组对象。
>>> x
matrix([[1, 5],
[3, 2]])

矩阵对象的属性

  • matrix.T transpose

:返回矩阵的转置矩阵

  • matrix.H hermitian (conjugate) transpose

:返回复数矩阵的共轭元素矩阵

  • matrix.I inverse

:返回矩阵的逆矩阵

  • matrix.A base array

:返回矩阵基于的数组

矩阵对象的方法

  • all([axis, out]) :沿给定的轴判断矩阵所有元素是否为真(非0即为真)

  • any([axis, out]) :沿给定轴的方向判断矩阵元素是否为真,只要一个元素为真则为真。

  • argmax([axis, out]) :沿给定轴的方向返回最大元素的索引(最大元素的位置).

  • argmin([axis, out]): 沿给定轴的方向返回最小元素的索引(最小元素的位置)

  • argsort([axis, kind, order]) :返回排序后的索引矩阵

  • astype(dtype[, order, casting, subok, copy]):将该矩阵数据复制,且数据类型为指定的数据类型

  • byteswap(inplace) Swap the bytes of the array elements

  • choose(choices[, out, mode]) :根据给定的索引得到一个新的数据矩阵(索引从choices给定)

  • clip(a_min, a_max[, out]) :返回新的矩阵,比给定元素大的元素为a_max,小的为a_min

  • compress(condition[, axis, out]) :返回满足条件的矩阵

  • conj() :返回复数的共轭复数

  • conjugate() :返回所有复数的共轭复数元素

  • copy([order]) :复制一个矩阵并赋给另外一个对象,b=a.copy()

  • cumprod([axis, dtype, out]) :返回沿指定轴的元素累积矩阵

  • cumsum([axis, dtype, out]) :返回沿指定轴的元素累积和矩阵

  • diagonal([offset, axis1, axis2]) :返回矩阵中对角线的数据

  • dot(b[, out]) :两个矩阵的点乘

  • dump(file) :将矩阵存储为指定文件,可以通过pickle.loads()或者numpy.loads()如:a.dump(‘d:\a.txt’)

  • dumps() :将矩阵的数据转存为字符串.

  • fill(value) :将矩阵中的所有元素填充为指定的value

  • flatten([order]) :将矩阵转化为一个一维的形式,但是还是matrix对象

  • getA() :返回自己,但是作为ndarray返回

  • getA1():返回一个扁平(一维)的数组(ndarray)

  • getH() :返回自身的共轭复数转置矩阵

  • getI() :返回本身的逆矩阵

  • getT() :返回本身的转置矩阵

  • max([axis, out]) :返回指定轴的最大值

  • mean([axis, dtype, out]) :沿给定轴方向,返回其均值

  • min([axis, out]) :返回指定轴的最小值

  • nonzero() :返回非零元素的索引矩阵

  • prod([axis, dtype, out]) :返回指定轴方型上,矩阵元素的乘积.

  • ptp([axis, out]) :返回指定轴方向的最大值减去最小值.

  • put(indices, values[, mode]) :用给定的value替换矩阵本身给定索引(indices)位置的值

  • ravel([order]) :返回一个数组,该数组是一维数组或平数组

  • repeat(repeats[, axis]) :重复矩阵中的元素,可以沿指定轴方向重复矩阵元素,repeats为重复次数

  • reshape(shape[, order]) :改变矩阵的大小,如:reshape([2,3])

  • resize(new_shape[, refcheck]) :改变该数据的尺寸大小

  • round([decimals, out]) :返回指定精度后的矩阵,指定的位数采用四舍五入,若为1,则保留一位小数

  • searchsorted(v[, side, sorter]) :搜索V在矩阵中的索引位置

  • sort([axis, kind, order]) :对矩阵进行排序或者按轴的方向进行排序

  • squeeze([axis]) :移除长度为1的轴

  • std([axis, dtype, out, ddof]) :沿指定轴的方向,返回元素的标准差.

  • sum([axis, dtype, out]) :沿指定轴的方向,返回其元素的总和

  • swapaxes(axis1, axis2):交换两个轴方向上的数据.

  • take(indices[, axis, out, mode]) :提取指定索引位置的数据,并以一维数组或者矩阵返回(主要取决axis)

  • tofile(fid[, sep, format]) :将矩阵中的数据以二进制写入到文件

  • tolist() :将矩阵转化为列表形式

  • tostring([order]):将矩阵转化为python的字符串.

  • trace([offset, axis1, axis2, dtype, out]):返回对角线元素之和

  • transpose(*axes) :返回矩阵的转置矩阵,不改变原有矩阵

  • var([axis, dtype, out, ddof]) :沿指定轴方向,返回矩阵元素的方差

  • view([dtype, type]) :生成一个相同数据,但是类型为指定新类型的矩阵。

举例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
>>> a = np.asmatrix('0 2 7; 3 4 8; 5 0 9')
>>> a.all()
False
>>> a.all(axis=0)
matrix([[False, False, True]], dtype=bool)
>>> a.all(axis=1)
matrix([[False],
[ True],
[False]], dtype=bool)

Astype方法
>>> a.astype(float)
matrix([[ 12., 3., 5.],
[ 32., 23., 9.],
[ 10., -14., 78.]])

Argsort方法
>>> a=np.matrix('12 3 5; 32 23 9; 10 -14 78')
>>> a.argsort()
matrix([[1, 2, 0],
[2, 1, 0],
[1, 0, 2]])

Clip方法
>>> a
matrix([[ 12, 3, 5],
[ 32, 23, 9],
[ 10, -14, 78]])
>>> a.clip(12,32)
matrix([[12, 12, 12],
[32, 23, 12],
[12, 12, 32]])

Cumprod方法
>>> a.cumprod(axis=1)
matrix([[ 12, 36, 180],
[ 32, 736, 6624],
[ 10, -140, -10920]])

Cumsum方法
>>> a.cumsum(axis=1)
matrix([[12, 15, 20],
[32, 55, 64],
[10, -4, 74]])

Tolist方法
>>> b.tolist()
[[12, 3, 5], [32, 23, 9], [10, -14, 78]]

Tofile方法
>>> b.tofile('d:\\b.txt')

compress()方法
>>> from numpy import *
>>> a = array([10, 20, 30, 40])
>>> condition = (a > 15) & (a < 35)
>>> condition
array([False, True, True, False], dtype=bool)
>>> a.compress(condition)
array([20, 30])
>>> a[condition] # same effect
array([20, 30])
>>> compress(a >= 30, a) # this form a
so exists
array([30, 40])
>>> b = array([[10,20,30],[40,50,60]])
>>> b.compress(b.ravel() >= 22)
array([30, 40, 50, 60])
>>> x = array([3,1,2])
>>> y = array([50, 101])
>>> b.compress(x >= 2, axis=1) # illustrates
the use of the axis keyword
array([[10, 30],
[40, 60]])
>>> b.compress(y >= 100, axis=0)
array([[40, 50, 60]])
clinjie wechat
Think about u every day